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ABSTRACT: There must be zero downtime for our nation’s bridges since they are vital to
our transportation networks. However, due to function modification, increased and faster-
moving traffic loads, and capacity overload, many bridges, including Busway accommoda-
tion, are currently operating at overloaded levels. In order to ensure that some bridges
remain structurally sound, structural health monitoring (SHM) systems are installed to
assess the bridges’ present condition and forecast when the structures might collapse.To train
the model, feature extraction is an important step. Two steps in feature extraction are data
reduction and blind separation. The model was trained using the Feature rich RNN-CTC to
ensure it was as accurate as possible. While competing methods such as RNN and CTC
achieved accuracy rates of 95.38%, the proposed method achieved a significant
improvement.

Keywords: Structural Health Monitoring (SHM), Bridge Health Monitoring (BHM),
Principle Component Analysis (PCA), Independent Component Analysis (ICA), Recurrent
Neural Networks

1 INTRODUCTION

Contemporary bridges routinely face a broad variety of operational and environmental
challenges. These outside forces are detrimental and will certainly speed up the
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deterioration of the structure. Furthermore, catastrophic events like earthquakes might
happen throughout a bridge’s operational life. Consequently, ensuring safety necessi-
tates the prompt identification of structural concerns. Visual inspection played a major
role in the past in assessing the condition of buildings and detecting surface defects.
However, even with well-trained inspectors, visual inspection is still inefficient, sub-
jective, and time-consuming, making it unable to identify changes in circumstances in
real-time. In the last several decades, structural health monitoring (SHM) techniques
have gained popularity as a way to address this problem, especially with long-span
bridges. Inadequate maintenance, weather-induced rebar corrosion, train and traffic
movements, damaged piers, and other causes can cause bridge sections to deteriorate.
Due to the work, traffic delays, and bridge closures involved in repairs or replace-
ments, the original construction cost can be doubled.An instance of this may be seen in
the shocking finding that the city’s railway officials discovered when inspecting a
strategically located Sivas overhead traffic bridge not long ago. The bridge failed the
basic load tests due to excessive deflection, which was caused by a large amount of
corrosion.

2 LITERATURE SURVEY

Visual inspections of bridges were once the norm, but they had their limits when it came
to resolution, unpredictability, and the capacity to spot obvious problems. [1]The evo-
lution of signal gathering and data transmission technology has given rise to new meth-
ods of monitoring and maintaining bridges, one of which is vibration-based Bridge
Health Monitoring (BHM). [2]. A trend in BHM techniques away from contact sensors
and toward non-contact ones has emerged in recent years as a result of next-gen, inex-
pensive sensors such as robots, cameras, and drones [3].Typically, a multitude of
instruments and actuators spread out throughout the bridge are required for conven-
tional monitoring in the vast majority of BHM investigations[4]. By combining deflection
data from the road with weigh-in-motion data from the vehicle’s two wheels, researchers
were able to pinpoint damaged sections of the bridge.[5]In order to locate damage, one
could look for changes in stiffness brought on by factors such as high vehicle speeds,
uneven profiles, and noisy data. Decision analysis based on posterior, prior, and pre-
posterior principles well-established in Bayesian decision theory formed the basis of the
aforementioned paradigm[6]. The two methods are based on the same foundation: the
linear utility theory originally proposed by von Neumann and Morgenstern and the
expected value requirement for decision making[7]. The methods described here are
broad strokes when applied to the problem of assessing bridge health with discrete state
variables; for example, see [8] for a broad strokes descriptionin the continuous realm for
making decisions. For the purpose of clarification, decision trees and influence diagrams
are also included. Three or five factors are taken into account by the choice analysis
methodologies that were previously mentioned[9]. The choice to reinforce, repair, or
replace the structure relies on the bridge’s state, which might range from broken to
worthless. Previous work has attempted to model and predict the heavy traffic LEs of
bridges. To predict future severe LEs, the studies used the normal probability idea to fit
the maximum traffic LE extremes to a normal distribution[10]. [11]The most severe
traffic LEs have been predicted by scientists utilizing the Rice formula-based level
crossing technique. [12]among the many scholars that have attempted to predict LEs
caused by extremely heavy traffic using extreme value analysis methods such as peak-
over-threshold or block maxima. On the other hand, research has been conducted by [13]
outlined all the possibilities for bridge traffic LE projections.
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3 PROPOSED SYSTEM

The fundamental objective of this research is to provide a standard method of assessing
bridge durability. In order to monitor the development of damage, the system needs to
integrate the findings of real-world visual inspections with more accurate degradation
models and a number of trustworthy sensors strategically distributed throughout the
structure.

3.1 Feature extraction

3.1.1 Data reduction
In order to minimize the size of the final intrinsic mode functions, principle component
analysis (PCA) is employed to decipher[14]. The altered new variables are described by their
key components. Here are a few things that set those primary components apart:The main
components are all independent and perpendicular to one another; they are also organized in
a precise order, with the first component having the most variance and the last component
having the least).

3.1.2 Blind seperation
The inability to track the source signals—like the building’s reaction to changes in wind
speed, traffic volume, or temperature and the lack of understanding of the mixed signal
are essential features of blind separation. The blind separation problem is solved using
independent component analysis (ICA), which is considered the gold standard.Matrix A,
which represents the set of observations in Equation 1, can be used to illustrate ICA. In
Equation 1, the transposition of matrix A is illustrated, with the sample index hequalling
1; 2; . . . ; bh.

Ah ¼
A1 h1ð Þ . . . A1 hbhð Þ

..

. . .
. ..

.

Aba h1ð Þ . . . Aba hbhð Þ

2
64

3
75 (1)

3.1.2 Residual network-RNN-CTC model training

3.1.2.1 RNN Among the many types of neural network models, recurrent neural net-
works are characterized by a directed cycle of connections between neurons. The vanishing
gradient problem, however, severely restricts the variety of context that may be practically
accessed by conventional RNN[15]. An RNN with an imposed memory structure, often
known as an LSTM cell, is one such option. LSTM-RNNs are able to efficiently train to
resolve long-term dependency issues, and they also manage to circumvent some of the
foundational issues with standard RNNs. In recent times, LSTM has emerged as a
prominent RNN.

3.1.2.2 CTC Connectionist temporal categorization is one kind of output layer. It is
mostly useful for two things. One of them is figuring out the loss, and the other is under-
standing RNN’s output[16]. The inclusion of a new label called blank creates a new set
S0 ¼ S [ blankf g. The input sequence w ¼ w1; . . .wH is accepted by CTC, where H is the
sequence length. The corresponding label that provides is G above R.

r Gj;wð Þ ¼
X

p2R�1 Gð Þ
r pj;wð Þ (2)
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being defined as the conditional probability of p:

r pj;wð Þ ¼
YH

h¼1

wh
ph

(3)

A label’s likelihood of being present at timestep h is denoted as wh
ph
. Directly computing

Equation 2 is not feasible. The CTC object function O Að Þis defined as the negative logarithm
of the ground truth probability for all cases for each training set A.

O Að Þ ¼ �
X

q;gð Þ2A
logr Gj;wð Þ (4)

4 RESULT AND DISCUSSION

The most common way to assess the condition of bridges is through visual inspections.
Every two years, bridges should be checked for damage. This may be useful for noncritical,
physically acceptable structures, but it is not reliable for determining a building’s actual
health.

Figure 1 shows the result of the Residual Network-RNN-CTC confusion matrix, which
showed that a condition with substantial damage was incorrectly classified as moderate
damage.

Figure 1. Confusion matrix for residual network-RNN-CTC model.
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Figure 2 displays the merged network’s performance. It displays the accuracy for both
training and validation.

Figure 3 illustrates that the loss curves exhibit saturation as the number of iterations grows
following 20 epochs of training the Residual Network-RNN-CTC model.

5 CONCLUSION

A growing number of small and medium span bridges are putting a strain on society’s
resources for upkeep and repair. The foundation of this approach to bridge management is
developing a method for assessing safety (conditions) using criteria like remaining life and

Figure 2. Training and validation accuracy.

Figure 3. Training loss of residual network-RNN-CTC.
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load bearing capacity. When compared to more traditional methods, bridge health mon-
itoring that makes use of sensors and information technology provides more accurate
insights into the performance of bridges.Data reduction and blind separation are the two
stages of feature extraction. The model is trained using feature-rich Residual Network-
RNN-CTC. With a consistency rate of 95.38%, the suggested technique surpasses both the
RNN and CTC models.
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